

Программа «Диагностика ЭМиТ»

«Диагностика электрических машин и трансформаторов»

Руководство оператора

СОДЕРЖАНИЕ

Содержание2
1. Назначение программы
2. Условия выполнения программы
3. Работа с программой «Диагностика ЭМиТ» 4
3.1. Главное окно 4
3.2. Вкладка «Формуляр»
3.3. Вкладка «Измерения» 7
3.4. Вкладка «Результаты»11
3.5. Вкладка «Анализ»13
3.6. Выход из программы

1. НАЗНАЧЕНИЕ ПРОГРАММЫ

1.1. Область применения программы «Диагностика ЭМиТ» — управление малогабаритным диагностическим комплексом, предназначенным для оценки технического состояния крупного энергетического оборудования, содержащего обмотки и магнитопровод.

2. УСЛОВИЯ ВЫПОЛНЕНИЯ ПРОГРАММЫ

2.1. Программа выполняется на ПК с характеристиками не хуже Pentium 4, 2.4 ГГц, ОЗУ 512 Мб, под управлением Windows XP/7/8/10.

2.2. Программа использует в работе модуль АЦП USB-3000. Перед запуском программы необходимо установить драйвер для модуля USB-3000 с компакт-диска фирмы R-Technlogy, поставляемого с модулем.

2.3. Программа устанавливается на ПК запуском инсталляционной программы «setup.exe». Инсталляционная программа создает на жестком диске папку «Диагностика ЭМиТ», содержащую исполняемый файл «Диагностика ЭМиТ» и набор системных файлов необходимых для работы программы. На рабочем столе создается ярлык запуска программы «Диагностика ЭМиТ».

2.4. Загрузочный файл программы – «Диагностика ЭМиТ.exe».

3. РАБОТА С ПРОГРАММОЙ «ДИАГНОСТИКА ЭМИТ»

3.1. Главное окно

3.1.1. После запуска программы открывается главное окно программы (рис. 1), содержащее четыре вкладки:

- «Формуляр»;
- «Измерения»;
- «Результаты»;
- «Анализ».

8		Диа	гностика ЭМиТ	_ 🗆 🗙
	Формуляр	Измерения	Результаты	Анализ
	Место проведения раб	бот	Здание N	·
	Объект диагностики		Трансформатор XXX	▼ 4
	Наименование опыта		Опыт 1	v 🖶
	Заводской номер		0000000000	Фаза А 🗹
	Масса активной части	, кг	50000	Фаза В 🗹
	Тепловое состояние, °	c	25	Фаза С 🗹
	Примечание			Дата 18.04.2016

Рис. 1

3.2. Вкладка «Формуляр»

3.2.1. Вкладка «Формуляр» содержит информацию об объекте диагностики и параметрах опыта.

3.2.2. При первом запуске программы необходимо заполнить вкладку «Формуляр» (рис. 2).

	Диаг	ностика ЭМиТ	_ 🗆 🗡
Формуляр	Измерения	Результаты	Анализ
Место проведения раб	от		v
Объект диагностики			✓
Наименование опыта			✓
Заводской номер			Фаза А 🗹
Масса активной части,	кг		Фаза В 🔽
Тепловое состояние, °С	:		Фаза С 🕑
Примечание		Дата	18.04.2016
1			

Рис. 2

3.2.3. Чтобы добавить новое место в список «Место проведение работ» необходимо нажать кнопку , расположенную правее списка, при этом откроется окно для ввода нового места проведения работ (рис. 3).

	Диаг	ностика ЭМиТ	_ 🗆 🔺
Формуляр	Измерения	Результаты	Анализ
Место проведения ра	бот		·
Объект диагностики	🛐 Диаг	тностика ЭМиТ	· +
Наименование опыт			 +
Заводской номер	Место проведения работ Введите новое место п Здание N	роведения работ	Фаза А 🕑
Масса активной час			Фаза В 🗹
Тепловое состояние,	OK	Cancel	Фаза С 🕑
Примечание			Дата 25.04.2016

Рис. 3

3.2.4. Аналогично добавляется объект диагностики (рис. 4).

3	Диаг	ностика ЭМиТ	_ 🗆 ×	
Формуляр	Измерения	Результаты	Анализ	
Место проведения ра	бот	Здание N	· ·	
Объект диагностики	🕅 Лиаг	ностика ЭМиТ	✓ ♣	
Наименование опыт	Объект диагностики		v .	
Заводской номер	Введите новый объект Трансформатор XXX	 Введите новый объект диагностики Трансформатор XXX		
Масса активной час			Фаза В 🗹	
Тепловое состояние,	ОК	Cancel	Фаза С 🗹	
Примечание			Дата 18.04.2016	

3.2.5. При нажатии кнопки enucka «Наименование опыта» в список автоматически добавляется запись «Опыт N», где N – порядковый номер опыта (рис. 5).

9	Диа	ностика ЭМиТ		_ 🗆 🗙
Формуляр	Измерения	Резул	льтаты	Анализ
Место проведения ра	бот	Здание N		v -
Объект диагностики		Трансформатор Х	XX	▼ ♣
Наименование опыта		Опыт 1		v 👍
Заводской номер		0000	0000000	Фаза А 🗹
Масса активной части	1, кг	5	0000	Фаза В 🗹
Тепловое состояние, °	с		25	Фаза С 🗹
Примечание				Дата 18.04.2016

Рис. 5

- 3.2.6. Затем заполняются остальные поля формуляра:
 - заводской и (или) диспетчерский номер объекта диагностики;
 - масса активной части объекта диагностики;
 - тепловое состояние объекта диагностики;

— дата проведения работ (формируется автоматически);

— примечание.

3.2.7. Выключателями «Фаза А», «Фаза В» и «Фаза С» выбираются фазы объекта диагностики, в которых будут проводиться измерения.

3.2.8. При повторном открытии окна «Формуляр» выполняется загрузка последнего использовавшегося формуляра.

3.2.9. Bce полученные данные В ходе проведения работ хранятся В папке «Диагностика ЭМиТ/Результаты». Данные в папке «Результаты» отсортированы по вложенным подпапкам «Место проведение работ», «Объект диагностики» и «Наименование опыта». Например, данные приведенного опыта будут храниться в папке «D:\Диагностика ЭМиТ\Результаты\Здание N\Трансформатор XXX\Опыт 1\». Устаревшие ИЛИ ненужные данные можно просто удалить из папки «Результаты».

3.3. Вкладка «Измерения»

3.3.1. Вкладка «Измерения» содержит две кнопки: «Импульсное механическое воздействие» и «АФЧХ RLC-контуров» (рис. 6), которые реализуют методику диагностики. Для корректной работы программы диагностики необходимо выполнить обе операции, предусмотренные каждой кнопкой, однако последовательность проведения измерений не имеет значения.

Рис. 6

3.3.2. При нажатии на кнопку «Импульсное механическое воздействие» открывается окно импульсных механических воздействий (рис. 7).

7

Рис. 7

3.3.3. Окно «Импульсное механическое воздействие» содержит диаграмму с графиками измеряемых процессов в каждой фазе диагностируемого устройства. Графики отображаются в реальном времени.

3.3.4. При открытии окна осуществляется регистрация напряжения на входах согласующего усилителя без импульсного механического воздействия на объекте диагностики. Среднее значение результатов измерения по каждой фазе отображается в панели «Уровень наводок».

3.3.5. Из среднего значения уровня наводок автоматически рассчитывается уровень запуска, который отображается в одноименном поле. При необходимости уровень запуска можно задать вручную.

3.3.6. Затем производится пробное импульсное воздействие. При превышении сигналом уровня запуска, процесс регистрации останавливается, и на экран выводятся графики временных процессов с каждой фазы диагностируемого устройства (рис. 8).

Рис. 8

3.3.7. Если уровень полученного сигнала низкий, то в окне, рядом с уровнем запуска, появится кнопка «Калибровка», нажатие на которую позволит более точно записать временные процессы. После нажатия кнопки программа проведет калибровку прибора и запустит режим ожидания импульсного воздействия. Если кнопка «Калибровка» не появилась, значит комплекс настроен правильно и можно продолжать серию воздействий.

3.3.8. Последовательно производится пять импульсных механических воздействий на объект диагностики. После каждого воздействия на экран выводятся результаты регистрации временных процессов, и оператор принимает решение о сохранении полученных данных, либо о проведении повторного воздействия.

3.3.9. Для перехода к следующему воздействию необходимо нажать кнопку «Продолжить» и произвести импульсное механическое воздействие.

3.3.10. Для исправления неудачного воздействия необходимо нажать кнопку «Повторить» и повторить импульсное механическое воздействие.

3.3.11. С помощью выпадающего списка воздействий, расположенного в правом нижнем углу окна (рис. 9), можно посмотреть все сохраненные данные и при необходимости повторить неудачное воздействие.

Рис. 9

3.3.12. После проведения серии пяти импульсных механических воздействий необходимо закрыть окно «Импульсное механическое воздействие» и вернуться на вкладку «Измерения» главного окна (см рис. 6).

3.3.13. При нажатии на кнопку «АФЧХ RLC-контуров» на вкладке «Измерения» главного окна (см. рис. 6) происходит измерение частотных характеристик объекта диагностики (рис. 10).

8	Диагности	ка ЭМиТ	_ 🗆 🛛 🗡
Формуляр	Измерения	Результаты	Анализ
2	Диагности	ка ЭМиТ	<
	Измерение АФЧ)	К RLC-контуров	
	Ф аза		
	Ψasa		
		· · · · · · · · · · · · · · · · · · ·	

Рис. 10

3.3.14. После проведения импульсных механических воздействий и определения частотных характеристик, кнопки вкладки «Измерения» меняют цвет (рис. 11).

Диагностика ЭМиТ — 🗆						
Формуляр	Измерения	Результаты	Анализ			
	возде	йствие				
	АФЧХ RLC	С-контуров				
		7				

Рис. 11

3.4. Вкладка «Результаты»

3.4.1. На вкладке «Результаты» отображаются результаты оценки остаточного усилия прессовки обмоток трансформаторов, относительно фазы с максимальным усилием поджатия (рис. 12). Максимальное усилие поджатия обмотки фазы соответствует 1.

3.4.2. Кнопка «С учетом разогрева» открывает окно оценки усилия прессовки обмоток с учетом теплового состояния трансформатора (рис. 13).

3.4.3. В окне вводится температура трансформатора при проведении измерений и температура в режиме нагрузки, для которых прогнозируется оценка прессовки обмоток трансформатора с учетом разогрева.

3.4.4. Значение «Тепловое состояние при проведении измерений, °С» соответствует значению «Тепловое состояние, °С» в формуляре (см. рис. 5). Изменение значения в одном из них автоматически приводит к изменению в другом.

3.5. Вкладка «Анализ»

3.5.1. С помощью вкладки «Анализ» (рис. 14) можно посмотреть результаты проведенных измерений и проанализировать полученные расчеты.

8	Диагност	ика ЭМиТ	_ 🗆 🗙
Формуляр	Измерения	Результаты	Анализ
	Архив рез	вультатов	
	Анализ ре расч	зультатов іета	
	Просмотр р регист	езультатов рации	

Рис. 14

3.5.2. Кнопка «Архив результатов» открывает окно результатов оценки прессовки трансформатора (рис. 15), в котором все результаты оценки прессовки проведенных испытаний данного трансформатора сведены в одной таблице.

	Диагно	стика ЭМиТ			_ □
Результаты о	ценки прессов	ки обмото	к трансфор	матора	
	Трансфор	матор ХХХ			
Название	Дата	Фаза А	Фаза В	Фаза С	
Опыт 3	04.05.2016	1	1	1	
Опыт 3	04.05.2016	1	1	1	
Опыт 1	18.04.2016	1	0,99	0,99	
					v l
	1	1	1	1	
					_
			с учето	ом разогрева	

Рис. 15

3.5.3. При включенном фильтре «с учетом разогрева» в таблицу по каждому испытанию выводится результат последней прогнозируемой оценки прессовки с учетом разогрева (рис. 16).

	Диагно	стика ЭМиТ			_ □
Результаты о	ценки прессов	ки обмотон	к трансфор	матора	
	Трансфор	матор ХХХ			
Название	Дата	Фаза А	Фаза В	Фаза С	
Опыт 3	04.05.2016	46	46	46	
Опыт 2	04.05.2016	46	46	46	
Опыт 1	18.04.2016	46	46	46	
		:			
			с учето	M DASOTDER	a 🗸
			e y iere	a paser per	

3.5.4. Кнопка «Анализ результатов расчета» (см. рис. 14) открывает окно результатов, в котором можно сравнить результаты расчетов амплитудно-частотных, фазо-частотных характеристик RLC-контуров и спектральную плотность мощности напряжения, наведенного в обмотках объекта диагностики, полученные в разных опытах (рис. 17). Сравнение осуществляется по фазам, с помощью переключателя «Выбор фазы».

Рис. 17

3.5.5. При открытии окна представляются к сравнению два последних проведенных опыта.
3.5.6. В списке опытов можно выбрать цвет линий графиков для данного опыта и отображение их в окнах «АЧХ», «ФЧХ» и «СПМ».

3.5.7. Опыты для сравнения выбираются с помощью кнопки «Выбор опыта» (рис. 18).

Рис. 18

3.5.8. Выбранные в появившемся окне опыты отобразятся на графиках после нажатия кнопки «ОК».

3.5.9. Если на одном из графиков дважды щелкнуть мышкой, откроется окно графика в увеличенном масштабе (рис. 19).

3.5.10. Кнопка «Просмотр результатов регистрации» (см. рис. 14) открывает окно, в котором можно посмотреть все результаты регистрации и расчетов проведенного опыта в виде графиков.

3.5.11. Выбрав комбинацию из переключателей «Измерения» и «Канал» группы «Импульсное механическое воздействие» на графике можно отобразить результат любого воздействия или нескольких воздействий одновременно (рис. 20).

3.5.12. Выбрав комбинацию из переключателей «Измерения» и «Канал» группы «АФЧХ RLC-контуров» на графике можно отобразить результаты измерений частотных характеристик объекта диагностики (рис. 21).

Рис. 21

3.5.13. Переключатели «СПМ» группы «Результаты расчетов» отображают на графике спектральную плотность мощности напряжения, наведенного в обмотках объекта диагностики при импульсном механическом воздействии (рис. 22).

18

Рис. 22

3.5.14. Переключатели «АЧХ» и «ФЧХ» группы «Результаты расчетов» отображают на графиках амплитудно-частотные и фазо-частотные характеристики RLC-контуров объекта диагностики (рис. 23).

Рис. 23

3.6. Выход из программы

3.6.1. Для выхода из программы необходимо нажать кнопку «×» расположенную в правом верхнем углу главного окна программы.